

Contact

MSC Polymer AG Germany Am Boden 25-27 D-35460 Staufenberg Hessen Germany E-Mail: info@msc-polymer.de Telefon: +49 (0) 6406-9149-0 Fax: +49 (0) 6406-6782

MSC Polymer Pte Ltd. Singapore 70 Kian Tech Road SG - 628798 Singapore E-Mail: info@msc-polymer.sg Telefon: +65-6268-2070 Fax: +65-6268-0771

www.msc-polymer.com

Thermal Management –

Cooling Solution for LED Applications

Your global source for PCB materials!

Your heat manager

ent — Applications

Your global source for PCB materials!

Excess heat directly affects short-term and long-term LED performance.

The short-term effects are color shift and reduced light output. The color or wavelength will change with temperature. With increasing temperature the wavelength of the color gets longer.

etion = 74°C

100%

90%

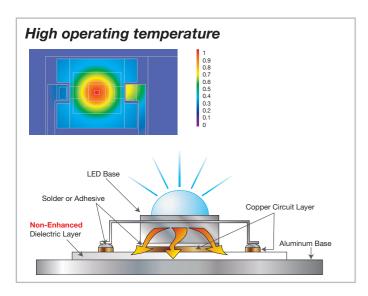
80%

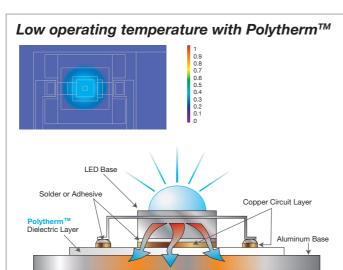
70%

60%

50%

1000


Output


Light

The long-term effect results in a significantly reduced lifetime.

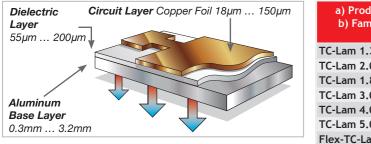
Two identical LEDs driven at the same current but with an 11 °C difference in junction temperature Tj. The result is a reduced lifetime of about 60% (estimated at 70% light output).

Polytherm[™] is the ideal solution to keep the LED operating temperature low and to minimize short-term and long-term effects.

Useful Life of High Brightness White LEDs at

Different Operating Temperatures

10 000

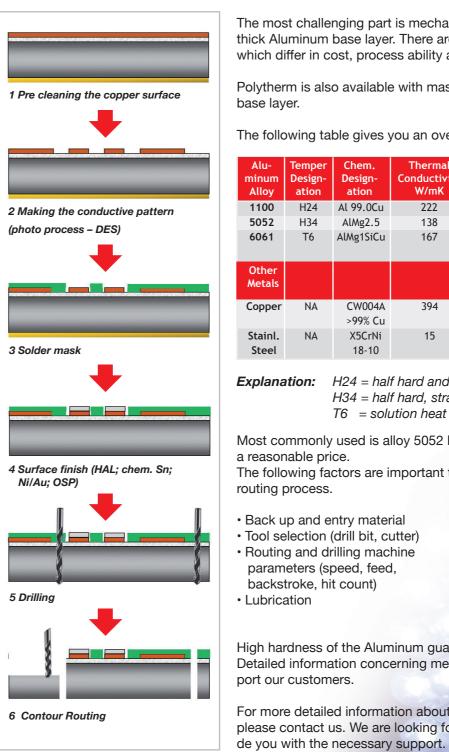

Hours

100 000

Polytherm[™]− the Solution

Polytherm[™] Insulated Metal Substrate is an optimized circuit board material for LED applications. A thin, thermally conductive layer is bonded to a thick Aluminum base layer for heat dissipation. On the opposite side there is a layer of copper foil for forming the circuitry.

Polytherm[™] substrates are available in various combinations in respect of thermal conductivity, copper-, dielectric-, and Aluminum thickness. Polytherm[™] is also available as flexible base material, e.g. 0.3 mm Aluminium, 55 µm dielectric und 35 µm copper.


Thermal Conductivity	Thermal Resistance	мот		Tg	СТІ
W/mK	K/W	°C	KV	°C	PLC
1.3	0.77 (1)	130	≥ 5	100	600
2.0	0.50 (1)	130	≥ 5	100	600
1.8	0.56 (1)	130	≥ 5	170	600
3.0	0.33 (1)	130	≥ 5	100	600
4.0	0.28 (1)	130	≥ 5	100	600
5.0	0.23 (1)	130	≥ 5	100	600
1.0	0.30 (2)	130	≥ 3	100	600
	Conductivity W/mK 1.3 2.0 1.8 3.0 4.0 5.0	Conductivity W/mK Resistance K/W 1.3 0.77 ⁽¹⁾ 2.0 0.50 ⁽¹⁾ 1.8 0.56 ⁽¹⁾ 3.0 0.33 ⁽¹⁾ 4.0 0.28 ⁽¹⁾ 5.0 0.23 ⁽¹⁾	Conductivity W/mK Resistance K/W ·c 1.3 0.77 (¹) 130 2.0 0.50 (¹) 130 1.8 0.56 (¹) 130 3.0 0.33 (¹) 130 4.0 0.28 (¹) 130 5.0 0.23 (¹) 130	$\begin{array}{c c c c c c } \hline Conductivity W/mK & Resistance K/W & °C & K/V \\ \hline C & C & C & C & C & C \\ \hline C & C & C & C & C \\ \hline C & C $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

1) Dielectric thickness 100µm | 2) Dielectric thickness 55µm | 3) IPC TM 650-2.5.6.2

Making Polytherm[™] printed circuit boards for LED applications

Processing the Polytherm[™] material is an easy task as it is very similar to the process for single side FR4 base material. Just some minor adjustments are necessary. For easier processing Polytherm[™] is covered on the Aluminum side with a high temperature stabile (< 280°C) protective film. It protects the Aluminum in all chemical wet processes and in addition in the solder mask curing process.

Six easy steps for making Polytherm[™] printed circuit boards

The most challenging part is mechanical processing (drilling, routing) of the thick Aluminum base layer. There are different Aluminum alloys available, which differ in cost, process ability and physical properties.

Polytherm is also available with massive copper or stainless steel as

nem. sign- tion	Thermal Conductivity W/mK	Brinell Hardness HB	Corrosion resistance	Process ability	Price Indi- cation
99.0Cu	222	32	Excellent	Poor	Low
Mg2.5	138	68	Good	Good	Medium
g1SiCu	167	95	Good	Good- very good	High
W004A 99% Cu	394	75	Good	Poor	Very high
(5CrNi 18-10	15	150- 180	Excellent	Special	High

The following table gives you an overview and a side by side comparison.

Explanation: H24 = half hard and partially annealed

H34 = half hard, strain hardened and stabilized

T6 = solution heat treated and artificially aged

Most commonly used is alloy 5052 H34, which offers good process ability for

The following factors are important to achieve good results in the drilling and

High hardness of the Aluminum guarantees good chipping and chip removal. Detailed information concerning mechanical processing is available to sup-

For more detailed information about Polytherm[™] technology and processing, please contact us. We are looking forward to hearing from you and will provi-